
PHYSICAL REVIEW E 67, 046619 ~2003!
Iterative approach to Maxwell equations for dielectric media of spatially varying refractive index
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~Received 18 November 2002; published 28 April 2003!

We propose an iterative method to solve the Maxwell equations for a one-dimensional model system with
spatially varying permittivity. We construct solutions that are iterative in the scattering order, equivalent to the
number of scattering events along the forward and backward directions. A numerical implementation of this
approach is also presented.
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I. INTRODUCTION

The large variety of problems in fiber optics communic
tion, waveguide technology, photonic and semiconductor
vices, and thin-film technology involves the study of the o
tical response of a one-dimensional~1D! medium with
specifically designed refractive index@1–5#. These problems
generally require the calculation of the transmission and
flection amplitudes of an incident electromagnetic fie
However, there exists no general solution to the Maxw
equations for media with an arbitrary refractive index. T
ditionally, the transfer matrix approach@6# is used if the me-
dium consists of a finite number of plane parallel dielect
slabs arranged either periodically or in a disordered fash
In this approach the optical properties of each slab or s
terer are described by a 232 matrix and the net reflection o
transmission amplitudes are obtained through matrix mu
plication. This numerical approach can also be extended
medium with a continuous refractive index by discretizi
the medium into a finite number of slabs of infinitesim
length. Other well known approaches suggested in litera
are the Green function technique@7#, the invariant embed-
ding theory@8,9#, and the wave splitting theory@10#. Alter-
natively, differential equations in terms of a suitable com
nation of scattering amplitudes can also be constructed@11#.

In this paper we suggest an alternative approach to
problem of scattering from a 1D medium. We show that
field propagating through a medium with an arbitrary refra
tive index can be expressed as a sum of fields correspon
to various scattering events. Such a solution can be gene
directly from the Maxwell equations when rewritten in term
of two auxiliary fields. The auxiliary fields give rise to a pa
of coupled differential equations with a familiar form
@8–12#, and when solved in an iterative fashion, the vario
orders of iteration correspond to the number of times
field undergoes forward or backward scattering in the m
dium. Thus, apart from being physically intuitive, in regim
where higher-order scattering events are not important,
solution simplifies both analytically and numerically. Pa
ticularly for wavelengths much larger than the size of t
scatterers, few scattering events are sufficient.

II. ANALYTICAL SOLUTIONS OF THE
ONE-DIMENSIONAL MAXWELL EQUATIONS

The Maxwell equations for a nonmagnetic medium w
position-dependent permittivity are given by
1063-651X/2003/67~4!/046619~9!/$20.00 67 0466
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¹W •«~rW !EW 50, ~2.1a!

¹W •BW 50, ~2.1b!

¹W 3EW 52]BW /]t, ~2.1c!

¹W 3BW 5«~rW !m]EW /]t. ~2.1d!

If the field is normally incident on a medium whose refra
tive index varies only along thex direction, these equation
take the form

]Bz~x,t !

]t
52

]Ey~x,t !

]x
, ~2.2a!

«~x!
]Ey~x,t !

]t
52

1

m

]Bz~x,t !

]x
, ~2.2b!

]By~x,t !

]t
5

]Ez~x,t !

]x
, ~2.2c!

«~x!
]Ez~x,t !

]t
5

1

m

]By~x,t !

]x
, ~2.2d!

whereEy,z andBy,z are the transverse field components. A
arbitrary transverse polarization can be expressed as a li
combination ofs polarization (Ey ,Bz) and p polarization
(By ,Ez), which are the two linearly independent polarizatio
modes. Consider auxiliary fields of the type

Rs~x,t ![
1

2
$A«~x!Ey~x,t !1Bz~x,t !/Am%,

Ls~x,t ![
1

2
$A«~x!Ey~x,t !2Bz~x,t !/Am%; ~2.3a!

Rp~x,t ![
1

2
$A«~x!Ez~x,t !2By~x,t !/Am%,

Lp~x,t ![
1

2
$A«~x!Ez~x,t !1By~x,t !/Am%. ~2.3b!

The wave equations~2.2a! and~2.2b! are equivalent to a se
of coupled equations for the auxiliary fields,Rs(x,t) and
Ls(x,t)
©2003 The American Physical Society19-1
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S v~x!
]

]x
1

]

]t DRs~x,t !52
1

2

dv~x!

dx
$Rs~x,t !1Ls~x,t !%,

~2.4a!

S v~x!
]

]x
2

]

]t DLs~x,t !52
1

2

dv~x!

dx
$Rs~x,t !1Ls~x,t !%,

~2.4b!

wherev(x)[„m«(x)…21/2 is the position-dependent velocity
A similar set of equations can be obtained forRp(x,t) and
Lp(x,t). The form of the generator in Eqs.~2.4! suggests tha
Rs(x,t) and Ls(x,t) represent fields propagating along t
positive and negativex directions, respectively.Rs

2(x,t) and
Ls

2(x,t) correspond to the right- and left-going photon fluxe
respectively. This can be obtained from the definitions~2.3a!.
One can show thatRs

2(x,t)1Ls
2(x,t)5 1

2 @«(x)Ey
2(x,t)

1(1/m)Bz
2(x,t)# is the energy density andv(x)„Rs

2(x,t)
2Ls

2(x,t)…5(1/m)Ey(x,t)Bz(x,t) is the Poynting vector of
the s-polarized field. Thus,Rs

2(x,t)2Ls
2(x,t) corresponds to

the net photon flux at positionx and at timet. In the follow-
ing sections, we show that for boundary value problem
Eqs.~2.4! can be solved iteratively in the frequency doma
and for initial value problems in the time domain. The sa
procedure can be followed for thep polarized field. Thus, we
omit the subscriptss andp.

III. THE ITERATIVE SOLUTIONS IN THE FREQUENCY
DOMAIN

Transforming the fields into Fourier space$L(x,t)
R(x,t)%

[(1/2p)*2`
` dve2 ivt$L(x,v)

R(x,v)%, the system~2.4! becomes

]

]x
R~x,v!5F iv

v~x!
1a~x!GR~x,v!1a~x!L~x,v!,

~3.1a!

]

]x
L~x,v!5F2

iv

v~x!
1a~x!GL~x,v!1a~x!R~x,v!,

~3.1b!

where a(x)[21/„2v(x)…dv(x)/dx. We can eliminate the
diagonal couplings by introducing the fields

R̃~x,v![expF2E
0

x

dx8S iv

v~x8!
1a~x8! D GR~x,v!,

~3.2a!

L̃~x,v![expF E
0

x

dx8S iv

v~x8!
2a~x8! D GL~x,v!,

~3.2b!

which satisfy the following set of equations:

]

]x
R̃~x,v!5a~x!Z2~x,v!L̃~x,v!, ~3.3a!

]

]x
L̃~x,v!5a~x!Z2* ~x,v!R̃~x,v!, ~3.3b!
04661
,

,

e

whereZ(x,v)[exp†2 iv*0
x@dx8/v(x8)#‡. We can construct

unique iterative solutions to this system in increasing ord
of a(x) for a given boundary condition. The zeroth-ord
solutions are governed by

]

]x
R̃~0!~x,v!50, ~3.4a!

]

]x
L̃ ~0!~x,v!50. ~3.4b!

Consider a medium present in the region 0,x,b. If there is
a source atx50 which generates a right-going wave, w
have R(x50,v)[ f (v) and L(b,v)[0, i.e., there is
no source generating a left-going wave atx5b. With this
set of boundary conditions, the solutions of Eqs.~3.4! are
R̃(0)(x,v)5 f (v) and L̃ (0)(x,v)50. By using the zeroth-
order solutions, higher-order solutions can be construc
from Eqs.~3.3!. In general, we can recursively generate t
mth-order solutions from the (m21)th-order solutions by
solving

]

]x
R̃~m!~x,v!5a~x!Z2~x,v!L̃ ~m21!~x,v!, ~3.5a!

]

]x
L̃ ~m!~x,v!5a~x!Z2* ~x,v!R̃~m21!~x,v! ~3.5b!

subject to the boundary conditionsR̃(m)(0,v)50 and
L̃ (m)(b,v)50 for mÞ0. This yields the recursive solution
of the type

R̃~m!~x,v!5E
0

x

dx8a~x8!Z2~x8,v!L̃ ~m21!~x8,v!,

L̃ ~m!~x,v!52E
x

b

dx8a~x8!Z2* ~x8,v!R̃~m21!~x8,v!.

~3.6!

Transforming back to our original fields using Eqs.~3.2!, we
get the iterative solutions forR andL;

R~m!~x,v!5
Z* ~x,v!

b~x!
E

0

x

dx8b~x8!a~x8!Z~x8,v!

3L ~m21!~x8,v!, ~3.7a!

L ~m!~x,v!52
Z~x,v!

b~x!
E

x

b

dx8b~x8!a~x8!Z* ~x8,v!

3R~m21!~x8,v!, ~3.7b!

whereb(x)[exp@2*0
xa(x8)dx8#5Av(x)/v(0) is the ratio of

the velocities atx and x50. For our boundary conditions
R(0,v)5R̃(0,v)5 f (v) andL(b,v)5L̃(b,v)50, we have
R(0)(x,v)5Z* (x,v) f (v)/b(x) andL (0)(x,v)50. In physi-
cal terms,R(0)(x,v) represents the right-going wave th
does not scatter inside the medium, and thusL (0)(x,v) is
9-2
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zero. Since L (0)(x,v)50, using Eq. ~3.7a! we obtain
R(1)(x,v)50, in agreement with the fact that there cannot
any transmitted light with an odd number of scattering eve
for any finite medium. Using these expression forR(0) and
L (0) and solving for various orders in Eqs.~3.7! yield
L (m)(x,v)50 and

R~m!~x,v!5~21!m/2R~0!~x,v!E
0

x

dxma~xm!Z2~xm ,v!

3E
xm

b

dxm21a~xm21!Z2* ~xm21 ,v!3¯

3E
0

x3
dx2a~x2!Z2~x2 ,v!

3E
x2

b

dx1a~x1!Z2* ~x1 ,v! ~3.8a!

for evenm integers. Similarly, for oddm integers, we obtain
R(m)(x,v)50 and

L ~m!~x,v!5~21!~m11!/2R~0!~x,v!Z2~x,v!

3E
x

b

dxma~xm!Z2* ~xm ,v!

3E
0

xm
dxm21a~xm21!Z2~xm21 ,v!3¯

3E
0

x3
dx2a~x2!Z2~x2 ,v!

3E
x2

b

dx1a~x1!Z2* ~x1 ,v!. ~3.8b!

It follows that the full solution to the system~3.1! is given by

R~x,v!5R0~x,v!1 (
even,m52

`

R~m!~x,v!,

L~x,v!5 (
odd,m51

`

L ~m!~x,v!. ~3.9!

IV. ILLUSTRATION OF THE FREQUENCY DOMAIN
TECHNIQUE FOR A SERIES OF DIELECTRIC SLABS

Let us first consider the simple case of aŷ-polarized field
f (v) incident on a single dielectric slab of thicknessb and
dielectric constant«0n2. The index of refractionn can be
considered complex if the medium is absorbing or ampli
ing @13,14#. The slab has sharp vacuum-medium interface
x50 and b. Then the velocityv(x)5c@12(121/n)u(x)
1(121/n)u(x2b)#, wherec5(m«0)21/2 is the velocity of
the incident light in vacuum and the usual unit step funct
is defined asu(x)50 for x,0, u(x)51/2 for x50, and
u(x)51 for x.0. Using the above expression forv(x) we
get
04661
e
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n

Z~x,v!5expF2
iv

c
$x1x~n21!u~x!

2~x2b!~n21!u~x2b!%G , ~4.1a!

a~x!5
1

2 F ~121/n!$d~x!2d~x2b!%

12~121/n!$u~x!2u~x2b!%G . ~4.1b!

It can be noted from the definition~2.3! that, unlike the tan-
gential and normal components of electric and magn
fields,L(x,v) andR(x,v) are not continuous at the bound
ary, if «(x) is discontinuous. Integrating Eq.~3.8b! from x
50 to x5b, the resulting expression for the left going wav
is

L ~1!~0,v!52E
0

b

dx a~x!Z2* ~x,v! f ~v!

5gF12expS 2iv

c
nbD G f ~v!, ~4.2!

where g[@(12n)/(11n)#. A careful examination shows
that expression~4.2! is the sum of two waves reflected at th
interface atx50 andx5b, respectively. Similarly integrat-
ing Eq. ~3.8a! with the limits x50 andx5b, we obtain

R~2!~b,v!52gL ~1!~0,v!expS iv

c
nbD

52g2 expS iv

c
nbD F12expS 2iv

c
nbD G f ~v!,

~4.3!

where we have used the boundary conditionL (1)(b,v)50.
The usual transmission and reflection amplitudes used in
transfer matrix theory@1,6# are related to our scattere
fields via r (v)[L(0,v)/ f (v) andt(v)[R(b,v)exp@2(iv/
c)b]/ f (v). This phase factor is necessary to reflect the f
that in the transfer matrix theoryt(v)51, whereasR(b,v)
5exp@(iv/c)b#f(v) for vacuum (n51). Summing up all the
iterative terms forR(b,v) andL(0,v) we obtain the series

r ~v!5gH 12expS 2iv

c
nbD J F11g2 expS 2iv

c
nbD

1g4 expS 4iv

c
nbD1¯G

5

gF12expS 2iv

c
nbD G

F12g2 expS 2iv

c
nbD G , ~4.4a!
9-3
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t~v!5F12g2H 12expS 2iv

c
nbD J 2g4 expS 2iv

c
nbD

3H 12expS 2iv

c
nbD G2¯GexpS iv

c
~n21!bD

5
~12g2!

F12g2 expS 2iv

c
nbD G expS iv

c
~n21!bD . ~4.4b!

The factors (12g2)exp@(iv/c)nb# in the expression~4.4b!
are the product of the fraction of the wave transmitted
both interfaces x50 and x5b. The factor (12g2)
3g2 exp@(iv/c)nb#exp@(2iv/c)nb# represents a wave trans
mitted after two reflections, first backwards atx5b, then
forward atx50. Continuing similarly, the higher order con
tribution can be explained.

We next generalize this approach to a medium contain
J slabs, arranged randomly along thex axis, with widthdj

[bj2aj , and dielectric constant«0nj
2. This sequence o

dielectric slabs is shown in Fig. 1. The index of refracti
nj , the width of each layerdj , and the spacing between th
centers of the slabsDxj were chosen randomly with a un
form distribution in the range 1.3<nj<1.5, 0.2<dj /Dx
<0.4, and 0.5<Dxj /Dx<1.5, respectively. HereDx denotes
the average spacing between two adjacent slabs. In the
lowing, all lengths become unitless and are expressed
terms of the scale lengthDx. If the incoming light is perpen-
dicular to the surface of the slabs, the corresponding M
well equations can be reduced to the set of one-dimensi
equations introduced in Eqs.~2.2!. This illustrates nicely that
the one-dimensionality is not merely a mathematical sim
fication but shows that the property«5«(x) can be easily
realized experimentally. Similar systems have been use
previous studies in connection with random lasers@13–15#.

We can evaluate the relevant integrals leading to

Z~x,v!5expF2
iv

c H x1(
j

J

~x2aj !~nj21!u~x2aj !

2(
j

J

~x2bj !~nj21!u~x2bj !J G ~4.5!

FIG. 1. Sketch of a layered medium with slabs arranged i
disordered fashion.
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a~x!5

(
j

J

~121/nj !$d~x2aj !2d~x2bj !%

2F12(
j

J

~121/nj !$u~x2aj !2u~x2bj !%G .

~4.6!

Using Eqs.~3.7!, the mth-order solution for the right- and
left-moving wave can be obtained,

R~m!~x,v!5
Z* ~x,v!

b~x! (
j 51

k21

g j$b~bj !Z~bj ,v!L ~m21!~bj ,v!

2b~aj !Z~aj ,v!L ~m21!~aj ,v!%, ~4.7a!

L ~m21!~x,v!5
Z~x,v!

b~x! (
j 5k

J

g j$b~aj !Z* ~aj ,v!

3R~m22!~aj ,v!2b~bj !Z* ~bj ,v!

3R~m22!~bj ,v!%, ~4.7b!

where k51,...,J and bk21<x<ak denotes the region be
tween the (k21)th andkth slab. The integrals in Eqs.~3.7!
were reduced to a summation over the scatterers. The p
factors reduce to

Z~ak ,v!5expF2
iv

c H ak1 (
j 51

k21

~nj21!dj J G
and

Z~bk ,v!5expF2
iv

c H bk1(
j 51

k

~nj21!dj J G .

In deriving Eq. ~4.7! we have used the notationg j[(1
2nj )/(11nj ). If we define the mth-order reflec-
tion and transmission amplitudes asr (m)(x,v)
[L (m)(x,v)b(x)/ f (v) and t(m)(x,v)[R(m)

3(x,v)b(x)/ f (v), the following recurrence relations ca
be obtained:

r ~m21!~ak ,v!/Z~ak ,v!5gk$t
~m22!~ak ,v!Z* ~ak ,v!

2t~m22!~bk ,v!Z* ~bk ,v!%

1r ~m21!~ak11 ,v!/Z~ak11 ,v!,

~4.8a!

r ~m21!~bk ,v!/Z~bk ,v!5gk11$t
~m22!~ak11 ,v!

3Z* ~ak11 ,v!

2t~m22!~bk11 ,v!Z* ~bk11 ,v!%

1r ~m21!~bk11 ,v!/Z~bk11 ,v!,

~4.8b!

a
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t~m!~ak ,v!/Z* ~ak ,v!5gk21$r
~m21!~bk21 ,v!Z~bk21 ,v!

2r ~m21!~ak21 ,v!Z~ak21 ,v!%

1t~m!~ak21 ,v!/Z* ~ak21 ,v!,

~4.8c!

t~m!~bk ,v!/Z* ~bk ,v!5gk$r
~m21!~bk ,v!Z~bk ,v!

2r ~m21!~ak ,v!Z~ak ,v!%

1t ~m!~bk21 ,v!/Z* ~bk21 ,v!.

~4.8d!

The boundary conditions can be rewritten asr (m)(bj ,v)
50 for all m,t(m)(0,v)50 for m>2 and t (0)(x,v)
5Z* (x,v). The system~4.8! can be solved for evenm. The
reflection and transmission coefficients are defined ag
through r (v)[L(0,v)/ f (v) and t(v)[R(b,v)exp@2(iv/
c)b#/f(v), which take the form

r ~v!5 (
even,m52

`

r ~m21!~0,v!, ~4.9a!

t~v!5expS 2
iv

c
bD S Z* ~b,v!1 (

even,m52

`

t ~m!~b,v!D .

~4.9b!

We show now numerically, for the medium with random
arranged dielectric layers, a comparison between the e
solution T[ut(v)u2 and the iterative solution. In the top o
Fig. 2, we have graphed the total transmission coefficient
the medium withJ5100 layers as a function of the wave
lengthl52pc/v. The exact transmission coefficient is o
tained using the transfer matrix theory@16,17#.

In the range from 0,l,8 the transmission is characte
ized by rapid oscillations, a very small change in wavelen
can change the medium from nearly transparent (T'0) to
almost opaque (T'1). For larger wavelengths the transmi
sion profile is less oscillatory and approachesT51 in the
limit of large wavelengths. We should note that this curve
for wavelength independent indices of refraction and is
tirely due to the scattering at the interfaces. For a med
whose index of refraction varies directly with the waveleng
of the incident light, the transmission curve would be mo
fied. In the inset we have amplified the small wavelen
window 10,l,12. We will use this range later in the dis
cussion of the time-dependent pulses. The exact transmis
is compared with the prediction of our iterative solutio
derived above form56, 10, and 20. While the terms up t
the sixth order give only a qualitative agreement, and for
range 10.3,l,10.5, T exceeds even the physical limit o
T51, the 20th-order iteration is practically indistinguishab
from the exact curve and we have full convergence.

To show the behavior of the iterated transmission coe
cients for the entire wavelength region we have displayed
the bottom figure the relative erroruT(m)(l)2T(l)u/T(l),
where T(m)(l)5ut(l)u2 is the transmission coefficient ob
tained for an iteration up to orderm in Eq. ~4.9b!. As the
04661
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transmission coefficient gets larger for longer waveleng
the error of the iterative solutions decreases. This is expe
because asT approaches unity, less and less higher-order
scattering events become important.

V. THE ITERATIVE SOLUTIONS IN THE TIME DOMAIN

In order to study our system in its time dependence, le
make the following change of variables to eliminate the se
coupling terms in the system~2.4!:

R̃~x,t ![b~x!R~x,t !, L̃~x,t ![b~x!L~x,t !. ~5.1!

Upon substitution of Eqs.~5.1! into the system~2.4!, we
obtain the following equations:

S v~x!
]

]x
1

]

]t D R̃~x,t !5w~x!L̃~x,t !, ~5.2a!

FIG. 2. ~Top! The net transmission coefficientT as a function of
wavelengthl from a medium containingJ5100 slabs. The refrac-
tive index, the location, and the width of the slabs were random
assigned from a uniform distribution in the range 1.3<nj<1.5,
0.5<xj /Dx<1.5, and 0.2<dj /Dx<0.4, respectively. The inse
shows the exact transmission coefficient compared to the trans
sion coefficients when evaluated up to various orders of iterat
~bottom! The relative error as a function of wavelengthl for the
same medium as in the top figure. In all graphs, the wavelengt
measured in units ofDx, the average distance between two slab
9-5
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S v~x!
]

]x
2

]

]t D L̃~x,t !5w~x!R̃~x,t !, ~5.2b!

where the coupling strength is proportional to the gradien
the velocity w(x)[2 1

2 dv(x)/dx. We can construct solu
tions that involve increasing orders of thew(x). The zeroth-
order iterative solutions are defined by

S v~x!
]

]x
1

]

]t D R̃~0!~x,t !50, ~5.3a!

S v~x!
]

]x
2

]

]t D L̃ ~0!~x,t !50 ~5.3b!

subject to the initial conditionsR(x,t50)[ f (x) and L(x,t
50)[0, i.e., initially there is no left going wave. We obta
R̃(0)(x,t)5 f @T21

„T(x)2t…#b@T21
„T(x)2t…# and L̃ (0)(x,t)

50, whereT(x)[*0
xdx8/v(x8) is the time a pulse of veloc

ity v(x) will take to travel fromx50 to x without scattering.
As v(x) @[„m«(x)…21/2# is positive the inverse function
T21(y) exists such thatT21

„T(x)…5x. We can generate re
cursively themth-order solutions from the (m21)th-order
solutions by solving the equations

S v~x!
]

]x
1

]

]t D R̃~m!~x,t !5w~x!L̃ ~m21!~x,t !, ~5.4a!

S v~x!
]

]x
2

]

]t D L̃ ~m!~x,t !5w~x!R̃~m21!~x,t ! ~5.4b!

subject to the initial conditionsR̃(m)(x,t50)50 and
L̃ (m)(x,t50)50 for m>1. This yields the recursive expres
sions

R̃~m!~x,t !5E
0

t

dt8w@T21
„t82t1T~x!…#

3L̃ ~m21!

3@T21
„t82t1T~x!…,t8#, ~5.5a!

L̃ ~m!~x,t !52E
0

t

dt8w@T21
„t2t81T~x!…#

3R̃~m21!

3@T21
„t2t81T~x!…,t8#. ~5.5b!

Using Eqs. ~5.1!, we obtain R(0)(x,t)5 f @T21
„T(x)

2t…#b@T21
„T(x)2t…#/b(x) and L (0)(x,t)50. We should

note that this complicated expression simplifies significan
when evaluated at positionsx that are outside the medium
(x>b). In this case the minimum arrival timet must be
larger thanT(x) which is the earliest time the pulse cou
arrive at locationx without scattering. For a negative arg
ment,T(x)2t, the inverse function is simplyT21(y)5cy,
associated with the propagation through vacuum before
pulse enters the medium atx50. In other words, the function
T21

„T(x)2t… reduces to the formc@T(x)2t#. This can be
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further simplified toc„T(x)2t…5x2ct1xd , where the de-
lay is defined asxd5cT(b)2b. Similarly, we obtainb(x)
51 for x>b and b@T21

„T(x)2t…#51 such that the trans
mitted zeroth-order pulse isR(0)(x,t)5 f (x2ct1xd), iden-
tical to a shifted initial pulse. Form.0, we obtain

R~m!~x,t !5
1

b~x!
E

0

t

dt8w@T21
„t82t1T~x!…#b@T21

„t82t

1T~x!…#L ~m21!@T21
„t82t1T~x!…,t8#, ~5.6a!

Lm~x,t !52
1

b~x!
E

0

t

dt8w@T21
„t2t81T~x!…#b@T21

„t2t8

1T~x!…#R~m21!@T21
„t2t81T~x!…,t8#. ~5.6b!

Note thatR(m)(x,t)50 for odd integerm andL (m)(x,t)50
for even integerm becauseL (0)(x,t)50.

We now show how these complicated expressions bec
simpler if the initial right-going intensity is a short pulse, i.e
R(x,t50)5d(x). This case will also help us to interpre
the time-dependent solution. In this caseR(0)(x,t)
5d@T21

„T(x)2t…#b@T21
„T(x)2t…#/b(x) and L (0)(x,t)

50. By direct computation using Eqs.~5.6!, we can simplify
the first-order reflected light to

L ~1!~x,t !52
1

b~x!
E

0

t

dt8w@T21
„t2t81T~x!…#b@T21

„T~x!

1t22t8…#d@T21
„T~x!1t22t8…#

52
1

b~x!
E

T21
„T~x!2t…

T21
„T~x!2t… dy

2v~y!
w@T21

„t/21T~x!/2

1T~y!/2…#b~y!d~y!

52
1

2cb~x!
w@T21

„t/21T~x!/2…#, t.T~x!,

~5.7!

where we writev(0)5c, the velocity of light in vacuum.
For t,T(x) the pulse does not have enough time to reacx
and we getL (1)(x,t)50. Similarly, solving Eqs.~5.6! for
R(2)(x,t) yields

R~2!~x,t !52
1

2cb~x!
E

0

t

dt8w@T21
„t82t1T~x!…#

3w@T21
„t82t/21T~x!/2…#. ~5.8!

At this point we can give an interpretation of these formul
R(2)(x,t) is the total field atx and t of all the right-going
fields that have scattered exactly two times. We introducex1
and x2 as the positions of the first and second scatter
events, respectively, with associated timest1 and t2 . Thus,
an initial right-going pulse travels from 0 tox1 in time t1
5T(x1), scatters atx1 , travels left fromx1 to x2 in time
T(x1)2T(x2), scatters atx2 , and then travels rightward
from x2 to x in time T(x)2T(x2). It should be borne in
mind that T(x2) is not the same ast2 because the latte
9-6
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ITERATIVE APPROACH TO MAXWELL EQUATIONS FOR . . . PHYSICAL REVIEW E 67, 046619 ~2003!
represents the time the pulse will reachx2 after multiple
scattering, whileT(x2) denotes time traveled along a straig
line to reach fromx50 to x5x2 . In order for this pulse to
arrive at x at time t, we have T(x1)1@T(x1)2T(x2)#
1@T(x)2T(x2)#5t. Similarly, in order for this pulse to ar
rive at x2 at time t2 , we must haveT(x1)1@T(x1)
2T(x2)#5t2 . This labeling scheme is depicted in Fig.
Solving for x1 andx2 in terms ofx, t, and t2 , we obtainx1
5T21(T(x)/22t/21t2) and x25T21

„T(x)2t1t2…. If we
replace the integration variablet8 by t2 in the formula for
R(2)(x,t) in Eq. ~5.8!, we obtain

R~2!~x,t !52
1

2cb~x!
E

0

t

dt2w~x2!w~x1!. ~5.9!

Thus, we can now interpretw(x) as the strength of direction
reversal at positionx and the integral corresponds to the su
of all the amplitudes of those fields that have scattered
actly twice before arriving at positionx and timet.

We now apply this insight to the general solutions in E
~5.6!. For a fixedm, xi is the position of thei th scattering
event along the path of a pulse that scatters exactlym times
before arriving at positionx at timet. t i denotes the time tha
the pulse arrives atxi . Then as above we can change va
ables that yields, form even (m>2), L (m)(x,t)50, and

R~m!~x,t !5~21!m/2
1

2cb~x!
E

0

t

dtmE
0

tm
dtm21¯

3E
0

t3
dt2w~xm!w~xm21!¯w~x1!. ~5.10!

Similarly, we have, for odd integerm, R(m)(x,t)50 and

L ~m!~x,t !5~21!~m11!/2
1

2cb~x!
E

0

t

dtmE
0

tm
dtm21¯

3E
0

t3
dt2w~xm!w~xm21!¯w~x1!. ~5.11!

FIG. 3. Sketch of a typical scattering path on which the iterat
approach is based.
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Thus, the system~2.4! with the initial conditionsR(x,t50)
5d(x) andL(x,t50)50 has the full solution

R~x,t !5d@T21
„T~x2t…!#b@T21

„T~x!2t…#/b~x!

1 (
even,m52

`

R~m!~x,t !,

L~x,t !5 (
odd,m51

`

L ~m!~x,t !. ~5.12!

These expressions are closely related to the iterative s
tions obtained in the frequency domain.

VI. NUMERICAL ILLUSTRATION OF THE ITERATIVE
TECHNIQUE

In this section, we show the implementation of the abo
time domain iterative technique to demonstrate the dynam
of a pulse with Gaussian profile. We consider againJ slabs of
thicknessdj and refractive indicesnj ( j 51,...,J). The ve-
locity function for this medium isv(x)5c@12( j 51

J (1
21/nj )„u(x2aj )2u(x2bj )…# and

T~x!5
1

c Fx1(
j 51

J

~nj21!$~x2aj !u~x2aj !

2~x2bj !u~x2bj !%G . ~6.1!

For this medium,T(x) is not a continuous function. The
direction reversal strength is obtained as

w~x!5
c

2 (
j 51

J
nj21

nj
$d~x2aj !2d~x2bj !%. ~6.2!

Using Eq.~5.5! for andm52,4,6,..., we get

R̃~m!~x,t !5E
T21

„T~x!2t…

x

dy a~y!L̃ ~m21!
„y,t1T~y!2T~x!…,

~6.3a!

L̃ ~m21!~x,t !52E
x

T21
„T~x!1t…

dy a~y!R̃~m22!
„y,t1T~x!

2T~y!…. ~6.3b!

As noted previously, if the region between the (k21)th and
kth slab is denoted byxk , then it is straightforward to show
that for t.0, R̃(m)(xI ,t)5L̃ (m21)(xJ11 ,t)50 and the recur-
sion relation of the following type can be obtained:

e

9-7
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R̃~m!~xk11 ,t !5gk$L̃
~m21!

„bk ,t1T~bk!2T~xk11!…

2L̃ ~m21!
„ak ,t1T~ak!2T~xk11!…%

1R̃~m!~xk ,t !, t.T~xk11!2T~a1!

~6.4a!

L̃ ~m21!~xk ,t !5gk$R̃
~m22!

„ak ,t1T~xk!2T~ak!…

2R̃~m22!
„bk ,t1T~xk!2T~bk!…%

1L̃ ~m21!~xk11 ,t !, t.T~bN!2T~xk8!.

~6.4b!

Let us now give a numerical illustration of the iteratio
scheme for a finite pulse propagating through the same
random slabs as discussed in Fig. 2. In Fig. 4 we presen
m50th, 2nd, 6th, and 20th order solutionsR(x5100,t) gen-
erated from the set~5.6! for an incoming Gaussian puls
R(x,t50)5 f (x)5@exp„2(x2x0)…2/2s2#cos@(v/c)(x2x0)#
of width s and centered atx05225. The central frequency
v was chosen to bev50.5712c/Dx, corresponding to a
wavelengthl511. The spatial widths510 corresponds to a
width in wavelength ofDl52. This range is precisely wha
has been displayed in the inset on the top of Fig. 2. T
transmission coefficient varies between 85% and 99% in
wavelength regime.

The first figure shows the zeroth-order solutionR(0)(x
5100,t). This corresponds to the output pulse in the abse
of scattering. In contrast to a pulse that has traveled thro
vacuum (n51), however,R(0) arrives a little bit delayed,
R(0)(x,t)5 f (x2ct1xd). This delayxd513.5 can be calcu-
lated from the medium as discussed above. For compari
a pulse that had propagated through vacuum,f (x2ct),

FIG. 4. The fieldR(b,t) as a function of time, transmitted from
a medium containingJ5100 slabs. The disorder in the refractiv
index, location, and width of the slabs are the same as in Fig. 2.
figures show the transmitted pulse computed up to various orde
iteration and the exact solution. For all the plots,b5100Dx and
time is measured in units ofDx/c.
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would take its peak time atct5125, whereas our pulse take
its largest value at timect5138.5.

The fact that in our iteration scheme the zeroth-order
lution agrees with a delayed pulse that has propaga
through vacuum, and therefore has the same energy as
incoming pulse, has interesting consequences. For a hi
scattering medium, the transmitted pulse is attenuated
quite different from the zeroth-order solution. Due to lar
amount of scatterings, the maximum of the exact pulse
rives at the right edge of the medium much later than
pulseR(0). In other words, the zeroth-order pulse predicts
too large amount of intensity at early arrival times and t
higher-order iterates must correct this via destructive in
ference. This scenario is quite different from a similar ite
tive approach to the one-dimensional Boltzmann equa
@18#, in which all iterated solutions are probabilities an
therefore positive and the higher-order terms cannot e
contributions from lower-order terms. In the Boltzmann ca
the zeroth-order contribution corresponds to exactly t
fraction of the transmitted light pulse that did not scatt
whereas in the present case of the Maxwell equations
total energy of the zeroth-order pulse is always larger th
the total energy of the transmitted pulse.

The second-order iterationR(2)(x,t) can contain informa-
tion about the trailing edge of the pulse. It should be no
that its tail for 150,ct,350 is quite similar to that of the
exact pulse. At the same time, the maximum amplitu
~51.4! is much larger than that of the exact pulse. The six
order solutionR(6)(x,t) can reduce this amplitude by de
structive interference, but the associated long time trail is
large. Finally, the 20th-order pulse is graphically indisti
guishable from the exact pulse and the iterative schem
converged. This convergence is expected from the inse
Fig. 2 for the individual wavelength components.

VII. SUMMARY AND OUTLOOK

In summary, we have derived an iterative method to so
the Maxwell equations for a one-dimensional model syst
with an arbitrary position-dependent dielectric constant.
have constructed solutions that are iterative in the scatte
order, equivalent to the number of scattering events along
forward and backward directions.

A very difficult question concerns the generalization
this approach to two- or even three-dimensional syste
The feasibility of the method is based on the fact that
electric and magnetic field vectors can be rewritten in ter
of a new left- and right-going field, respectively, which a
coupled by the Maxwell equations. Following this procedu
for a two-dimensional system would require the definition
a new vector fieldM (rW,vW ) as a function ofEW andBW which is
an explicit function of the propagation directionvW . The spa-
tial and temporal evolutions of this field should be given
a Boltzmann-like generator of the form] t1vW •¹W to permit
the appropriate interpretation. However, we have not b
able to construct such a field.

This work has been devoted to the derivation of this ite
tive scheme. Even though the main emphasis was on its
merical implementation, the lowest-order solutions prov
fully analytical expressions that can be used for further

he
of
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vestigations. One area of recent interest is to compare
solutions of the Boltzmann equation for one-dimensio
medium with the exact ones from the Maxwell equatio
@16#. As a derivation of the Boltzmann equation from th
Maxwell equation is still a challenge@19,20# and only small
progress has been reported for special fields propaga
through vacuum, our analytical solutions can be used to
various approximation schemes to better bridge the relat
e

tt

d

-
,

o
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ng
st
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ship between the Maxwell and Boltzmann description. W
will report on these investigations elsewhere.
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